608. Molecular Polarisability. Steric Courses for the Replacement of Hydroxyl by Chlorine in cis-2-Decalol.

By J. M. Eckert and R. J. W. Le Fèvre.

Dipole moments, molar Kerr constants, refractivities, etc., are reported for cis-2-decalol (m. p. 104-106 ${ }^{\circ}$), and for three samples of cis-2-decalyl chloride, prepared by treatment of the alcohol with phosphorus pentachloride, hot concentrated hydrochloric acid, or thionyl chloride, respectively. Values of $\infty\left({ }_{m} K_{2}\right)$ for the three halides are compared with those calculated, from polarisability data, for rival space formulæ, and, on the basis of a previous assignment of configuration to cis-2-decalol (m. p. 104-106 ${ }^{\circ}$), steric courses for the three reactions ar discussed. Phosphorus pentachloride and hydrochloric acid substitute largely with inversion of configuration, and thionyl chloride with retention; observed ${ }_{\infty}\left({ }_{m} K_{2}\right)$ values for the halides prepared with hydrochloric acid and thionyl chloride, however, are compatible with some degree of racemisation.

The configurations of 2 -substituted decalins (I) are expressed, by convention, in terms of the relative positions of the hydrogen atoms at $\mathrm{C}-9$ and $\mathrm{C}-10$ and $\mathrm{C}-9$ and $\mathrm{C}-2$; cis-conA formations have the hydrogen atoms at positions 9 and 10 on the same side of the molecule, and may be either cis,cis, if the 2 -hydrogen is also on that side, or cis,trans, if the 2 -hydrogen is trans to the 9 -hydrogen. ${ }^{1}$
cis,cis- and cis,trans-2-Decalol both exist as an equilibrium mixture of two chair-chair conformations, ${ }^{2}$ the hydroxyl group being attached equatorially in the one, and axially in the other [structures (II),(III) and (IV),(V), respectively]. From scale molecular models, it is evident that there is marked steric interaction of the substituent and the axial-hydrogen at position 8 in structure (III); ${ }^{\mathbf{1 , 3}}$ conformational analysis has, therefore, been based on the assumption that cis,cis-2-decalol should possess a more equatorial character than the cis,trans-epimer. Since the hydrogen phthalate of cis-2-decalol (m. p. 105°) is hydrolysed at 1.5 times the rate of the hydrogen phthalate of the

isomer (m. p. 18°), ${ }^{4}$ the former is assigned the cis,cis-conformation (II),(III), a conclusion substantiated by studies of the catalytic hydrogenation and subsequent elimination reactions of 2-naphthoic acids. ${ }^{5}$ If this is so, conformational analysis of the cis-2-decalyl chlorides, obtained from cis-2-decalol (m. p. 105°) by use of different substituting agents, should demonstrate, in addition, the steric courses of the different reactions. Molar Kerr constants have, therefore, been measured for cis-2-decalol (m. p. 104-106 ${ }^{\circ}$), and for
${ }^{1}$ Daubin, Tweit, and Mannerskantz, J. Amer. Chem. Soc., 1954, 76, 4420.
${ }^{2}$ Bastiensen and Hassel, Nature, 1946, 15'7, 765.
${ }^{3}$ Mills, J., 1953, 260.
${ }^{4}$ Hückel, Havekoss, Kumstat, Ullmann, and Doll, Annalen, 1938, 533, 128.
${ }^{5}$ Linstead, Doering, Davis, Levine, and Whetstone, J. Amer. Chem. Soc., 1942, 64, 1985.
three samples of cis-2-decalyl chloride (prepared with phosphorus pentachloride, hot concentrated hydrochloric acid, and thionyl chloride, respectively), as solutes in benzene.

Experimental

Apparatus, procedures, notation, and methods of calculation are described in refs. 6 and 7; symbols and equations required for the treatment of observational data have been summarised before. ${ }^{8}$

Solvent.-The solvent used was freshly-distilled sodium-dried benzene, $\varepsilon^{25} 2 \cdot 2725, d_{4}{ }^{25}$ $0.87378, n_{\mathrm{D}}{ }^{25} 1 \cdot 4973,10^{7} B_{\mathrm{D}}{ }^{25} 0.410$.

Solutes.-cis-2-Decalol (m. p. 104-106 ${ }^{\circ}$) was prepared from 2-naphthol by Raney nickelcatalysed hydrogenation at $140^{\circ} / 130 \mathrm{~atm} .9,10$ Phosphorus pentachloride was added to a solution of cis-2-decalol (m. p. 104-106 $)$ in dry chloroform, containing calcium carbonate in suspension. ${ }^{11}$ The mixture was shaken at room temperature overnight, poured into water, and extracted with ether; the washed ether extract yielded $c i s$-2-decalyl chloride, b. p. 112-116 $/$ 15 mm . (Found: C, 69.2; H, 9.7; Cl, 20.9. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{Cl}$ requires $\mathrm{C}, 69.5 ; \mathrm{H}, 9.9 ; \mathrm{Cl}, 20.5 \%$). A second sample was obtained by heating cis-2-decalol (m. p. 104-106 ${ }^{\circ}$) with concentrated

Table 1.

Kerr effects, dielectric constants, etc., of solutions in benzene at 25°.

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=2 \cdot 29 ; \quad \Sigma \Delta d / \Sigma w_{2}=0.106 ; \quad \Sigma \Delta n / \Sigma w_{2}=-0.004_{5} ; 10^{7} \Sigma \Delta B / \Sigma w_{2}=0.25$.

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=3.05 ; \Sigma \Delta d / \Sigma w_{2}=0.133 ; 10^{7} \Sigma \Delta B / \Sigma w_{2}=4.40$.

cis-2-Decalyl chloride (from HCl)								
$10^{5} w_{2}$	410	583	1189	1400	1775	1997	2641	3346
ε^{25}	$2 \cdot 2848$	-	-	-	2.3281	$2 \cdot 3348$	2.3560	$2 \cdot 3753$
$d_{4}{ }^{25} \ldots$	-	0.87957	0.87535	0.87560	-	-	0.87715	0.87809
$10^{7} \Delta B$	-	$0 \cdot 023$	0.049	$0 \cdot 057$	0.071	0.077	$0 \cdot 102$	-

cis-2-Decalyl chloride (from SOCl_{2})											
$10^{5} w_{2}$	514	666	817	823	870	951	1109	1512	1514	1824	1973
ε^{25}.		$2 \cdot 2935$	2.2974	2.2973	-	$2 \cdot 3007$	$2 \cdot 3072$	-	-		
$d_{4}{ }^{25}$.	$0 \cdot 87443$	0.87461	-	$0 \cdot 87489$	-	$0 \cdot 87504$	0.87529	-	-		-
$10^{7} \Delta B$	--	-	-	-	0.029	-	-	$0 \cdot 050$	0.048	$0 \cdot 060$	0.055

[^0]Table 2.
Calculation of results.

	$\alpha \varepsilon_{1}$	β	γ	δ	$\infty P_{\text {T }}$ (c.c.)	$R_{\text {D }}$ (c.c.)	$\mu(\mathrm{D}) *$	$10^{12} \infty\left({ }_{m} K_{2}\right)$
cis-2-Decalol (m. p.	$2 \cdot 29$	$0 \cdot 121$	-0.003	$0 \cdot 6$	112.6	$45 \cdot 0$	$1 \cdot 7$ g	5
cis-2-Decalyl chloride (PCl_{5})	3.05	$0 \cdot 152$	$0 \cdot 000$	10.7	149.0	49-1	$2 \cdot 18$	133
cis-2-Decalyl chloride (HCl)	$3 \cdot 11$	$0 \cdot 148$	$0 \cdot 000$	$9 \cdot 6$	151.2	$49 \cdot 3$	$2 \cdot 20$	118
$\begin{gathered} \text { cis-2-Decalyl chloride } \\ \left(\mathrm{SOCl}_{2}\right) \ldots \ldots \ldots \ldots . . \end{gathered}$	3.06	$0 \cdot 151$	$0 \cdot 000$	$7 \cdot 7$	$149 \cdot 4$	$49 \cdot 1$	$2 \cdot 19$	92

hydrochloric acid in a sealed tube at 125° for 10 hr .; ${ }^{12}$ when the reaction mixture was worked up in the usual way, cis-2-decalyl chloride, b. p. $114-118^{\circ} / 19 \mathrm{~mm}$. was obtained (Found: C, $69 \cdot 8 ; \mathrm{H}, \mathbf{9 . 7} ; \mathrm{Cl}, 20.8 \%$). A third sample, b. p. $119-124^{\circ} / 20 \mathrm{~mm}$. (Found: C, 69.7 ; $\mathrm{H}, 10 \cdot 0$; $\mathrm{Cl}, 19.7 \%$) was prepared, using thionyl chloride as substituting agent; ${ }^{1}$ a solution of $c i s$-2-decalol (m. p. 104-106 ${ }^{\circ}$) in purified thionyl chloride was allowed to stand overnight at room temperature, warmed at 70° for 2 hr ., and the mixture worked up as before.

Measurements.-These are listed in Table 1; quantities calculated therefrom, including dipole moments and molar Kerr constants at infinite dilution, are in Table 2. For the concentrations used, differences (Δn) between the refractive indices of solution and solvent were beneath the limit of detection for all three chlorides.

Discussion

Standard computational procedures exist ${ }^{6,13}$ for calculating a priori the molar Kerr constant of a molecular structure having specifiable geometry. Initial data required are the longitudinal, transverse, and vertical polarisabilities ($b_{\mathrm{L}}, b_{\mathrm{T}}$, and b_{V}) of bonds involved. In the present work, the following values are taken (for the $\mathrm{C}-\mathrm{H},{ }^{6 a} \mathrm{C}-\mathrm{C},{ }^{6 a}$ and $\mathrm{C}-\mathrm{Cl}^{6 d}$ bonds, respectively): $10^{23} b_{\mathrm{L}} 0.064,0.099,0.382 ; 10^{23} b_{\mathrm{T}} 0.064,0.027,0.185 ; 10^{23} b_{\mathrm{V}} 0.064,0.027$, $0 \cdot 185$. For each bond, the three polarisabilities are related to Cartesian axes (X, Y, Z), arbitrarily set up within the molecular framework, by nine direction cosines from which the polarisability of evey bond along the X, Y, Z directions can be determined and totalled for the whole molecule. The estimate, referred to X, Y, Z, which results is conveniently summarised by a symmetric matrix, Q, which, by an appropriate orthogonal transformation, affords the diagonal matrix, diag. $\left(b_{1} b_{2} b_{3}\right)$, representing induced moments with respect to principal axes ($1,2,3$). The principal semi-axes of the molecular polarisability ellipsoid and their locations within X, Y, Z are, therefore, given by the eigenvalues and three orthonormal eigenvectors of the matrix, Q .

Molar Kerr constants are thus calculated for axial and equatorial forms of both cis,cis- and cis,trans-2-decalyl chloride [structures (VI),(VII) and (VIII),(IX), respectively]. All interbond angles have been taken as tetrahedral; in models (VI) and (VIII), axes (X, Y, Z) are located with X and Y in the plane of $\mathrm{C}-1, \mathrm{C}-9, \mathrm{C}-3$, and $\mathrm{C}-4$, and the X-axis parallel to the $1,9-\mathrm{link}$, and in models (VII) and (IX) with X and Y in the plane of C-1, $\mathrm{C}-2, \mathrm{C}-4$, and $\mathrm{C}-10$, and the X-axis parallel to the 1,2 -link. Expected molecular polarisability semi-axes $\left(b_{1}, b_{2}, b_{3}\right)$ and resolutes ($\mu_{1}, \mu_{2}, \mu_{3}$) of the observed dipole moment, as calculated, are in Table 3; from these, molar Kerr constants for conformations (VI)(IX) emerge as in the last column. Observed molar Kerr constants are subject to standard deviations of the order of 5 units, so that the three values (footnote § in Table 3) are, therefore, significantly different. Although the ratio of equatorial to axial form in the cis,trans-epimer is uncertain, conclusions of a general nature can still be drawn.

[^1]Table 3.
Polarisability semi-axes, dipole moment components, etc., for cis-2-decalyl chloride.

Principal polarisability semi-axes *		Direction cosines with \dagger			Dipole moment components \ddagger	$10^{12}{ }_{\mathrm{m}} K$ (calc.) §
		X	Y	Z		
(VI) $\{$	1.998	0.9421	-0.2628	-0.2084	-2.05	
	1.905	0.2991	0.9394	$0 \cdot 1677$	-0.65	68
	1.800	$0 \cdot 1517$	-0.2203	0.9636	-0.33	
(VII)	1.998	$0 \cdot 1174$	-0.2629	0.9577	-2.05	
	1.905	$0 \cdot 2577$	0.9394	0.2263	-0.65	68
	1.800	0.9591	-0.2202	-0.1781	-0.33	
(VIII)	1.998	$0 \cdot 1174$	0.2629	0.9577	2.05	
	1.905	-0.2578	0.9393	-0.2263	-0.65	68
	1.800	0.9590	0.2203	-0.1781	$0 \cdot 33$	
(IX) $\{$	$2 \cdot 113$	$0 \cdot 2955$	0.8591	-0.4178	$2 \cdot 17$	
	1.826	-0.4963	0.5117	0.7013	$0 \cdot 17$	170
	1.764	$0 \cdot 8163$	0.0001	$0 \cdot 5776$	0.00	

* Listed in descending order as b_{1}, b_{2}, and b_{3}, in units of 10^{-23} c.c. \dagger See text for location in molecular framework. \ddagger Listed in descending order as μ_{1}, μ_{2}, and μ_{3} (in D). § The observed values from the three methods of preparation are: $133\left(\mathrm{PCl}_{5}\right) ; 118(\mathrm{HCl}) ; 92\left(\mathrm{SOCl}_{2}\right)$.

Steric Course of the Substitution with Phosphorus Pentachloride.-The observed ${ }_{\mathrm{m}} \mathrm{K}$ of cis-2-decalyl chloride, prepared from cis,cis-2-decalol by treatment with phosphorus pentachloride, corresponds to $50-70 \%$ content of (IX); substitution has, therefore, been accompanied by predominant inversion of configuration; $50-70 \%$ inversion if the cis,trans-chloride is 100% equatorial, 100% inversion if the equatorial : axial ratio is 0.5 0.7 . The latter, characteristic of an $S_{\mathrm{N}} 2$ mechanism, conforms more to the pattern of previous experience with phosphorus pentachloride substitutions, ${ }^{14}$ and would, in addition, confirm the suggestion of Mills, ${ }^{3}$ that the two forms of cis,trans-2-substituted decalins do not differ greatly in stability.

Steric Course of the Substitution with Hydrochloric Acid.-The observed ${ }_{\mathrm{m}} \mathrm{K}$ of cis-2-decalyl chloride, obtained with hot concentrated hydrochloric acid as substituting agent, differs from that observed for the sample prepared with phosphorus pentachloride by a little more than the experimental error. The lower value, however, is consistent with the increased racemisation that would be expected to accompany a coupled $S_{\mathrm{N}} 1$ mechanism.

Steric Course of the Substitution with Thionyl Chloride.--An observed ${ }_{\mathrm{m}} K$ of 92×10^{-12} is compatible with $20-30 \%$ content of (IX); if an equatorial : axial ratio for the cis- to the trans-isomer of $0.5-0.7$ is accepted, it may be concluded that chlorination of cis,cis2 -decalol with thionyl chloride has proceeded with $25-50 \%$ inversion. The retention of configuration, normally associated with an $S_{\mathrm{N}} i$ mechanism is indicated but is evidently incomplete.

Grateful acknowledgement is made to General Motors-Holden for the award of a Research Fellowship to J. M. E.

University of Sydney, Sydney, N.S.W., Australia.
[Received, December 31st, 1963.]

[^2]
[^0]: ${ }^{6}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem. (Australia), 1955, 5, 261; (b) J., 1953, 4041 ; (c) chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience, New York and London, 3rd edn., 1960, vol. I, p. 2549; (d) J., 1956, 3549.

 7 Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953, ch. 2.
 ${ }^{8}$ Le Fèvre and Sundaram, $J ., 1962,1494$.
 ${ }^{9}$ Musser and Adkins, J. Amer. Chem. Soc., 1938, 60, 664.
 ${ }_{10}{ }^{10}$ Stork and Hill, J. Amer. Chem. Soc., 1957, 79, 495.
 ${ }^{11}$ Shoppee and Summers, J., 1952, 1790.

[^1]: 12 Borsche and Lange, Annalen, 1924, 434, 225.
 ${ }^{13}$ Eckert and Le Fèvre, J., 1962, 1081.

[^2]: ${ }^{14}$ Ingold, " Structure and Mechanism in Organic Chemistry," Cornell Univ. Press, Ithaca, New York, 1953, p. 306 et seq.

